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The melting of ice in a hot humid stream of air 

By DONALD L. TURCOTTE 
U.S. Naval Postgraduate School, Monterey, California* 

(Received 13 October 1959) 

By use of appropriate approximations the incompressible stagnation-point 
ablation rate for ice is determined theoretically. The theory includes both melting 
and vaporization or condensation. To verify the theory hemispheres of ice were 
melted in a subsonic wind tunnel with controlled humidity. It is found that the 
effects of heat transfer and condensation are of equal importance in determining 
the melt rate. The agreement between theory and experiment is adequate. 

1. Introduction 
In  order to understand the many mechanisms involved in ablation it seems 

appropriate to study some of the simpler problems in detail. It is the purpose of 
this paper to analyse the incompressible stagnation-point melting of ice from a 
hemisphere in hot, humid air. The convective heat transfer to the ice body will 
certainly melt it. However, vaporization or condensation of water can have an 
important effect on the melt rate. The problem considered here is illustrated in 
figure 1.  
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FIGURE 1. Illustration of stagnation-point ablation. 

To obtain any solution to the problem many assumptions must be made. The 
work of Roberts (1958) provides an insight into what approximations are valid if 
mass transfer is neglected. In  this paper these approximations are applied to the 
problem with diffusion effects included. The diffusion problem of mass transfer 
in boundary-layer flows has been discussed in detail by Lees (1958). 

* Now at Cornell University, Ithaca, New York. 
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2. Theory 
The solution of the incompressible boundary-layer equations for the stagnation 

region of a hemisphere is well known (Schlichting 1955, p. 162). The solution for 
a melting material which does not vaporize has been given by Roberts (1958). The 
results obtained by Roberts indicate what approximations may be valid in the 
present problem. A solution to the present problem will be obtained neglecting 
the presence of the water layer. This is equivalent to the following assumptions. 

(i) The velocity at  the air-water interface is small compared with the velocity 
at  the outer edge of the air boundary layer. 

(ii) The temperature increase across the water layer is small compared with the 
temperature increase in the air boundary layer. 

(iii) The heat convected away in the water layer is small compared with the heat 
flux across the layer. Having obtained a solution utilizing this approximation, 
its validity will be checked. 

With the presence of the water layer neglected, the boundary conditions at the 
water-ice interface may be applied at  the air-water interface. Since it is assumed 
that the ice is at its melt temperature, the heat transfer qm[Z] on the liquid side 
of the air-water interface may be related directly to the melt rate wi of the ice 
by the relation 

where Lf is the heat of fusion for water and pi the density of ice. 
The solution for the air boundary layer, including heat transfer and diffusion, 

may be obtained following the method of Lees (1958). For simplicity air will be 
denoted by the subscript A and water vapour by the subscript B. The enthalpy is 
then defined by h = KAhA + KBhB, where K A  and K ,  are the concentrations by 
weight of air and water vapour ( K A  + K ,  = 1) .  Near the stagnation point of a 
hemisphere the appropriate boundary-layer equations for the conservation of 
mass, momentum, energy, and species concentration are 

awv1 = PiLffWO (1)  

where CT is the Prandtl number c p p r / ~  and h the Lewis number pDABcP/K. For the 
diffusion of water vapour in air the binary diffusion coefficient DAB has the value 
0.240 x 10-3ft.Z/sec. The corresponding value of the Lewis number is 1.20. In  
order to make the above set of equations amenable to analysis the remainder of 
the solution will be restricted to the case h = 1.00. The adequacy of this approxi- 
mation may be deduced from comparison with experiment. 



Melting of ice in a hot humid stream of air 125 

In  order to reduce the above set of equations to their ‘similarity’ form the 
following set of dimensionless variables are introduced 

h = h,-(hw-ho)g(7), K ,  = ~Bw-(G?, -G3o)n(7) -  (6) 

f’2-2ffll = l+ f” ,  (7) 

g” + 2vfg’ = 0, (8 )  
n” + 2vfnl = 0. (9 )  

Assuming K,, and h, to be constant we may write equations (2-5) as a set of 
ordinary differential equations: 

The appropriate boundary conditions are: 

1 a t  r = O ,  f = f ’ = g = n = O ;  

at 7 = a ,  f ’ = g = n = l .  

Actually vaporization corresponds to fluid injection so thatf(0) $: 0. But it will 
be assumed that f (0 )  < 1 so that the flow in the air boundary layer is unaffected. 
If this approximation is not adequate then an iteration procedure can be used to 
obtain a solution. 

The numerical solution to (7) with the boundary conditions (10) is given by 
Schlichting (1955). The solutions to equations (8) and ( 9 )  have been obtained by 
Sibulkin (1952). The resultant values for the wall gradients of enthalpy and 

where u has been assumed to be 0.700. The differential of the enthalpy may be 
written d h  = GdT + (h, - h,) dK,. Using this relation and the similarity between 
enthalpy and concentration gradients the temperature gradient at the wall may 
be written 

To obtain the rate at  which the ice melts, the gradients of temperature and 
concentration must be related to the rate at  which heat is transferred through 
the water layer. A relation may be written for the conservation of water across 
the air-water interface. The balance of diffusion of water vapour against the 
normal current of water vapour above and water below the interface gives 

This balance is illustrated in figure 2 .  In  a similar manner the energy balance may 
be written. Equating the transport of heat by conduction and diffusion to the 
normal currents of energy in the air and water we obtain 
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This balance is also illustrated in figure 2 .  Using the heat of vaporization for 
water defined by L, = hBw - hw[l] and (14 )  with the condition h = 1 ,  we may 
write ( 1  5 )  in the form 

Combination of (l), (1 I), { 12) and (16) with the condition CT = 0-700 then gives the 
stagnation melt rate for a hemisphere of ice in humid air, 

w i d &  = 1-160- P H ,  
Pi 

(17) 

where the dimensionless enthalpy transfer parameter H is defined by the 
equation 

It should be emphasized that the numerical constant in (17 )  is valid only for 
v = 0.700. The only variable in the above result which needs further discussion is 
KBw. The equilibrium value for KBw would be the ratio of the density of saturated 

(a)  (a) 
FIGURE 2. Mass and energy balmces at the air-water interface. 

(a)  balance of water mass; ( b )  energy balance. 

water vapour at  the melt temperature (T,) to the local density. A theoretical 
determination of the departure from the equilibrium value requires a detailed 
analysis of the evaporation and adsorption processes such as that given by Bauer 
& Zlotnick (1958).  In  the present work it is assumed that the equilibrium value 
is applicable. 

The above solution has been obtained by neglecting the presence of the water 
layer. To check this assumption an approximate solution for the flow and heat 
transfer in the water layer will be found. First, however, the requirement that 
f ( 0 )  < 1 will be considered. From ( 6 ) ,  (12 )  and (14 )  with IT = 0.700, it is found that 

KBO-KBW ~- -. f ( 0 )  = 0.472 - 
1-KBw 

If the velocity at  the air-water interface is small compared with the velocity 
at  the outer edge of the air boundary layer then f '(0) < 0. To determine this 
quantity the water layer is assumed to have a thickness 8, independent of x and 
a velocity distribution linear in both x and y, u = Gxy. The validity of these 
choices has been discussed in some detail by Roberts (1958). Conservation of 
mass in the water layer gives 

plG622 = piwi - ( P V ) ~ .  (19)  
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The continuity of stress at the air-water interface requires that 

In  the present notation u(0) = GxS,, so combination of (6), (12), (14), (17), (19) 

and (20) gives, with the assumption 1 +% + 1, Lv 

f’(0) = 1.118- - H  
P1 (” vz )* 

A similar method may be used to determine whether the temperature at  the 
outer edge of the water layer is significantly larger than the melt temperature. 
If gT = (T-Tw)/(To-Tw), the required inequality is g T ( 0 )  4 1. Assuming a 
linear temperature profile T = A y  + T, we obtain 

k l A  = awv1 (22) 

for the continuity of heat flux at the air-water interface. Then using (12), (13), 
(16), (19), (20) and (22), we find that 

To estimate the heat convected away in the water layer a quadratic temperature 
distribution is assumed for the water layer, T = A y  + B y 2  + T,. The continuity 
of heat flux at the air-water interface gives 

kz(A + 2B4) = &&I. (24) 

The difference in energy flux between the air-water interface and the ice-water 
interface is equated to the heat convected away in the water boundary layer to 
obtain the second required equation, 

a,[lI -kzA - (pv)wcz(A4 +m) = C L P i  wi - (PV),) ($A + W Z )  4, (25) 

where cz is the specific heat of water. If a shielding parameter S is defined by 
S = (klA -q,[Z])/(qw[Z]}, the convective losses in the water layer may be 
neglectedifa < 1. Theshieldingparametermaybeevaluatedfrom (12), (13), (16), 
(17), (19), (20), (24) and (25). Thus 

The validity of the assumptions will be checked when specific experimental 
conditions are considered. 

3. Experiments 
The stagnation point ablation of a hemispheric model fabricated from ice was 

determined in a subsonic wind tunnel. The experiments were carried out in the 
40 x 36 in. closed circuit subsonic wind tunnel at  the U.S. Naval Postgraduate 
School, Monterey, California. The humidity of the air in the tunnel was controlled 
by a fine water spray. This method provided a constant moisture content at any 
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level above the atmospheric value. The water vapour content was measured with 
an Aminco-Dunmore electric hygrometer. 

The ice models were cast in hemispherical moulds. Models with nominal radii 
of2 and 4 in. were used. To obtain reproducible results ice was required which did 
not contain air bubbles. To accomplish this the standard commercial technique 
was utilized. While the model was freezing, air was bubbled through the distilled 
water. The agitation produced ice which was optically clear in the region melted 
during the experiments. For some time before it was used each model was stored 
a t  a temperature just below 32 O F .  

When models which contained air bubbles were ablated deep erosions occurred. 
It is hypothesized that the irregularities in the ice induced transition in the 
external boundary-layer flow; this in turn increased the local heat transfer and 
rate of melting, causing deep cavities. Using ice free of air bubbles, steady 
ablation was observed over the full range of free-stream velocities available. The 
model remained hemispherical. 
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FIGURE 4. Dependence oftheradiusandstagnationpointpositionontime; U ,  = 237 ft./sec, 
To = 84.2 O F ,  pBo = 1.573 x lb./ft.3, wi = 1.066 x ft./sec. 

Quantitative measurements of the rate of ablation at the stagnation point were 
obtained for fixed values of the free-stream velocity, temperature, and humidity. 
The range of free-stream velocities was from 40 to 250ft./sec, the free-stream 
temperature was near 85 O F ,  the free-stream relative humidity ranged from 20 to 
90%, and models withradiiof 2 and 4in. were used. During eachrun themodelwas 
photographed at regular intervals; a sequence of these photographs is shown in 
figure 3 (plate 1 ) .  The screen at the base of the hemisphere was used to control 
splashing during fabrication. From the photographs the position of the stag- 
nation point was determined using an optical comparator. The radius of the 
hemisphere as a function of time was also determined from the photographs. 
These variables are plotted against time in figure 4 for the same run that is 
illustrated in figure 3. The constant slope of the position curve gives the rate of 
ablation at  the stagnation point. From (17) this rate depends on the square root 
of the radius so that any change in slope should indeed be negligible. 

For this representative run the validity of the approximations used in the 
analysis may be checked by using (18), (21), (23) and (26). The numerical values 
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WIGURE 3 (plate 1) .  I’liotographs of an  ablating hcmisphore of ico; U ,  = 237 ft./sec., 
II’ - 84.2 “ F ,  /If l , ,  = 1.573 x lb./f’t.3. 0 -  

TUHCOTTX (Fucitcg p. 1%) 
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obtained are f(0) = 0.845 x and 
S = 0.135 x 10-2. Since all values are considerably less than one the neglect of 
the water layer and the finite injection velocity at  the air-water interface seems 
appropriate for the experimental conditions considered. 

f ‘(0) = 0.182 x lod2, gT(0)  = 1.07 x 

(PlPi)  fl x 10‘ 

FIGURE 5. Dependence of the dimensionless melt rate on the enthalpy transfer parameter; 
T, i 85 OF, p ~ , ,  = 0.55 - 1.60 x lb./ft., U,  = 40-250 ft./sec. 0, R = 2 in.; 0, R = 4 in. 

All measurements are plotted in figure 5 in terms of the dimensionless variables 
obtained from the theory. Equation (17)  is plotted for comparison. The variation 
in the enthalpy transfer parameter was obtained by varying the free-stream 
moisture content. The value of K,, was obtained from the density of saturated 
water vapour at  32 O F  (p,, = 0.303 x 10-31b./ft.3). For all cases considered the 
density of water vapour in the free stream was higher than the wall value so that 
moisture actually condensed at  the air-water interface. It is interesting to note 
that this condensation caused from 30 to 70% of the ablation. This rather 
surprising result is due to the large heat of vaporization for water. The agreement 
between theory and experiment seems adequate. 
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